Translate

Jumat, 06 Januari 2017

As-Syaikh Abu Musa Jabir Ibn Hayyan Al-Baroki

Abu Mūsā Jābir ibn Hayyān (Arabic: جابر بن حیان‎‎, Persian: جابر بن حیان‎‎, often given the nisbahs al-al-Bariqi, al-Azdi, al-Kufi, al-Tusi or al-Sufi; fl. c. 721 – c. 815), ‎also known by the Latinization Geber, was a prominent polymath: a chemist and alchemist, astronomer and astrologer,engineer, geographer, philosopher,physicist, and pharmacist and physician. Born and educated in Tus, he later traveled to Kufa. He is sometimes referred to as the father of early chemistry.‎

As early as the 10th century, the identity and exact corpus of works of Jabir was in dispute in Islamic circles. His name was Latinized as "Geber" in the Christian West and in 13th-century Europe an anonymous writer, usually referred to as Pseudo-Geber, produced alchemical and metallurgical writings under the pen-name Geber.

Biography 
Early references
In 988 Ibn al-Nadim compiled the Kitab al-Fihrist which mentions Jabir as a spiritual follower and as a companion to Jafar as-Sadiq, the sixth Shia Imam. In another reference al-Nadim reports that a group of philosophers claimed Jabir was one of their own members. Another group, reported by al-Nadim, says only The Large Book of Mercy is genuine and that the rest are pseudographical. Their assertions are rejected by al-Nadim. ‎ Joining al-Nadim in asserting a real Jabir; Ibn-Wahshiyya ‎("Jaber ibn Hayyn al-Sufi ...book on poison is a great work...") Rejecting a real Jabir; (the philosopher c. 970) Abu Sulayman al-Mantiqi claims the real author is one al-Hasan ibn al-Nakad al-Mawili. The 14th century critic of Arabic literature, Jamal al-Din ibn Nubata al-Misri declares all the writings attributed to Jabir doubtful.‎

Life and background
Jabir was a natural philosopher who lived mostly in the 8th century; he was born in ‎Tus, Khorasan, in Persia,‎ well known as ‎Iran then ruled by the Umayyad Caliphate. Jabir in the classical sources has been entitled differently as al-Azdi al-Barigi or al-Kufi or al-Tusi or al-Sufi.‎ There is a difference of opinion‎ as to whether he was a Persian from Khorasan who later went to Kufa or whether he was, as some have suggested, of Syrian origin and later lived in Persia and Iraq. ‎His ethnic background is not clear, ‎but most sources reference him as a Persian. ‎In some sources, he is reported to have been the son of Hayyan al-Azdi, a pharmacist of the Arabian Azd tribe who emigrated fromYemen to Kufa (in present-day Iraq) during the Umayyad Caliphate.‎ while Henry Corbin believes Geber seems to have been a client of the 'Azd tribe. ‎Hayyan had supported the Abbasid revolt against the Umayyads, and was sent by them to the province of Khorasan (present day Afghanistan and Iran) to gather support for their cause. He was eventually caught by the Umayyads and executed. His family fled to Yemen, ‎where Jabir grew up and studied the Quran, mathematics and other subjects. ‎Jabir's father's profession may have contributed greatly to his interest in alchemy.

After the Abbasids took power, Jabir went back to Kufa. He began his career practicing medicine, under the patronage of a Vizir (from the noble Persian family ‎Barmakids) of Caliph Harun al-Rashid. His connections to the Barmakid cost him dearly in the end. When that family fell from grace in 803, Jabir was placed under house arrest in Kufa, where he remained until his death.

It has been asserted that Jabir was a student of the sixth Imam Ja'far al-Sadiq a‎nd Harbi al-Himyari; ‎however, other scholars have questioned this theory.‎

The Jabirian corpus
‎‎
In total, nearly 3,000 treatises and articles are credited to Jabir ibn Hayyan. Following the pioneering work of Paul Kraus, who demonstrated that a corpus of some several hundred works ascribed to Jābir were probably a medley from different hands,‎ mostly dating to the late 9th and early 10th centuries, many scholars believe that many of these works consist of commentaries and additions by his followers, particularly of an is‎maili persuasion.

The scope of the corpus is vast: cosmology, music, medicine, magic, biology, chemical technology, geometry, grammar, metaphysics, logic, artificial generation of living beings, along with astrological predictions, and symbolic Imâmî myths.

The 112 Books dedicated to theBarmakids, viziers of Caliph Harun al-Rashid. This group includes the Arabic version of the Emerald Tablet, an ancient work that proved a recurring foundation of and source for alchemical operations. In the Middle Ages it was translated into Latin (Tabula Smaragdina) and widely diffused among European alchemists.
The Seventy Books, most of which were translated into Latin during the Middle Ages. This group includes the Kitab al-Zuhra ("Book of Venus") and the Kitab Al-Ahjar ("Book of Stones").
The Ten Books on Rectification, containing descriptions of alchemists such as Pythagoras, Socrates, Plato and ‎Aristotle.
The Books on Balance; this group includes his most famous 'Theory of the balance in Nature'.
Jabir states in his Book of Stones (4:12) that "The purpose is to baffle and lead into error everyone except those whom God loves and provides for". His works seem to have been deliberately written in highly esoteric code (see steganography), so that only those who had been initiated into his alchemical school could understand them. It is therefore difficult at best for the modern reader to discern which aspects of Jabir's work are to be read as ambiguous symbols, and what is to be taken literally. Because his works rarely made overt sense, the term gibberish is believed to have originally referred to his writings (Hauck, p. 19).

People
Jabir's interest in alchemy was inspired by his teacher Ja'far as-Sadiq. When he used to talk about alchemy, he would say "my master Ja'far as-Sadiq taught me about calcium, evaporation, distillation and crystallization and everything I learned in alchemy was from my master Ja'far as-Sadiq." ‎Imam Jafar was famed for his depth and breadth of knowledge. In addition to his knowledge of Islamic sciences, Imam Jafar was well educated in natural sciences, mathematics, philosophy, astronomy, anatomy, chemistry (alchemy), and other subjects. The foremost Islamic alchemist Jabir bin Hayyan was his most prominent student. Other famous students of his were Imam Abu Hanifa and Imam ‎Malik Ibn Anas, the founders of two Sunni schools of jurisprudence, and Wasil ibn Ata, the founder of the Mutazilite school of Islamic thought. Imam Jafar was known for his liberal views on learning, and was keen to debate with scholars of different faiths and of different beliefs. Imam Abu Hanifa is quoted by many sources as having said "My knowledge extends to only two years. The two I spent with Imam Jafar Sadiq". Some Islamic scholars have gone so far as to call Imam Jafar Saddiq as the root of most of Islamic jurisprudence, having a massive influence on Hanafi, Maliki and Shia schools of thought extending well into mainstream Hanbali and Shafi'i thought. Imam Jafar also attained a surpassing knowledge in astronomy and in the science of medicine.

Jabir professes to draw his inspiration from earlier writers, legendary and historic, on the subject. In his writings, Jabir pays tribute to Egyptian and Greek alchemists ‎Zosimos, Democritus, Hermes Trismegistus, Agathodaemon, but alsoPlato, Aristotle, Galen, Pythagoras, andSocrates as well as the commentators Alexander of Aphrodisias Simplicius,Porphyry and others. A huge pseudo-epigraphic literature of alchemical books was composed in Arabic, among which the names of Persian authors also appear like ‎Jāmāsb, Ostanes, Mani, testifying that alchemy-like operations on metals and other substances were also practiced in Persia. The great number of Persian ‎technical names (zaybaq = mercury, nošāder = sal-ammoniac) also corroborates the idea of an important Iranian root of medieval alchemy.‎ Ibn al-Nadim reports a dialogue between Aristotle and Ostanes, the Persian alchemist of Achaemenid era, which is in Jabirian corpus under the title of Kitab Musahhaha Aristutalis.‎ Ruska had suggested that the Sasanian medical schools played an important role in the spread of interest in alchemy.‎ He emphasizes the long history of alchemy, "whose origin is Arius ... the first man who applied the first experiment on the [philosopher's] stone... and he declares that man possesses the ability to imitate the workings of Nature" (Nasr, Seyyed Hussein, Science and Civilization of Islam).

Theories
Jabir's alchemical investigations ostensibly revolved around the ultimate goal of takwin — the artificial creation of life. TheBook of Stones includes several recipes for creating creatures such as scorpions,snakes, and even humans in a laboratory environment, which are subject to the control of their creator. What Jabir meant by these recipes is unknown.‎

Jabir's alchemical investigations were theoretically grounded in an elaborate numerology related to Pythagorean and ‎Neoplatonic systems. ‎The nature and properties of elements was defined through numeric values assigned the Arabic consonants present in their name, a precursor to the character notation used today.

By Jabirs' time Aristotelian physics had become Neoplatonic. Each Aristotelian element was composed of these qualities:fire was both hot and dry, earth, cold and dry, water cold and moist, and air, hot and moist. This came from the elementary qualities which are theoretical in nature plus substance. In metals two of these qualities were interior and two were exterior. For example, lead was cold and dry and gold was hot and moist. Thus, Jabir theorized, by rearranging the qualities of one metal, a different metal would result. Like Zosimos, Jabir believed this would require a catalyst, an al-iksir, the elusive elixir that would make this transformation possible — which in European alchemy became known as the philosopher's stone.‎

According to Jabir's mercury-sulfur theory, metals differ from each in so far as they contain different proportions of the sulfur and mercury. These are not the elements that we know by those names, but certain principles to which those elements are the closest approximation in nature.‎ Based on Aristotle's "exhalation" theory the dry and moist exhalations become sulfur andmercury (sometimes called "sophic" or "philosophic" mercury and sulfur). The sulfur-mercury theory is first recorded in a 7th-century work Secret of Creationcredited (falsely) to Balinus (Apollonius of Tyana). This view becomes widespread. ‎In the Book of Explanation Jabir says

the metals are all, in essence, composed of mercury combined and coagulated with sulphur [that has risen to it in earthy, smoke-like vapors]. They differ from one another only because of the difference of their accidental qualities, and this difference is due to the difference of their sulphur, which again is caused by a variation in the soils and in their positions with respect to the heat of the sun

Holmyard says that Jabir proves by experiment that these are not ordinary sulfur and mercury.

The seeds of the modern classification of elements into metals and non-metals could be seen in his chemical nomenclature. He proposed three categories:‎

"Spirits" which vaporise on heating, like arsenic (realgar, orpiment), camphor,mercury, sulfur, sal ammoniac, and ‎ammonium chloride.
"Metals", like gold, silver, lead, tin,copper, iron, and khar-sini (Chinese iron)
Non-malleable substances, that can be converted into powders, such as stones.
The origins of the idea of chemical equivalents might be traced back to Jabir, in whose time it was recognized that "a certain quantity of acid is necessary in order to neutralize a given amount of base."‎ Jabir also made important contributions to ‎medicine,astronomy/astrology, and other sciences. ‎Only a few of his books have been edited and published, and fewer still are available in translation.‎

Laboratory equipment and materia
The Jabirian corpus is renowned for its contributions to alchemy. It shows a clear recognition of the importance of experimentation, "The first essential in chemistry is that thou shouldest perform practical work and conduct experiments, for he who performs not practical work nor makes experiments will never attain to the least degree of mastery."‎ He is credited with the use of over twenty types of now-basic chemical laboratory equipment, ‎such as the alembic‎ and retort, and with the description of many now-commonplace chemical processes – such as ‎crystallisation, various forms of alchemical "distillation", and substances citric acid (the sour component of lemons and other unripe fruits), acetic acid (from vinegar) and ‎tartaric acid (from wine-making residues),arsenic, antimony and bismuth, sulfur, and ‎mercury ‎that have become the foundation of today's chemistry.‎

According to Ismail al-Faruqi and Lois Lamya al-Faruqi, "In response to Jafar al-Sadik's wishes, [Jabir ibn Hayyan] invented a kind of paper that resisted fire, and an ink that could be read at night. He invented an additive which, when applied to an iron surface, inhibited rust and when applied to a textile, would make it water repellent.".‎

Alcohol and the mineral acids
According to Forbes "no proof was ever found that the Arabs knew alcohol or any mineral acid in a period before they were discovered in Italy, whatever the opinion of some modern authors may be on this point." Fractional distillation of alcohol first occurs about 1100 probably in Salerno.Magister Salernus (died 1167) provides one of the earliest direct recipes. ‎Directions to make sulfuric acid, nitric acid ‎and aqua regis appear in the pseudo-Geberian works Liber Fornacum, De inventione perfectionis, and the Summa.‎

Legacy

Whether there was a real Jabir in the 8th century or not, his name would become the most famous in alchemy.‎ He paved the way for most of the later alchemists, including al-Kindi, al-Razi, al-Tughrai andal-Iraqi, who lived in the 9th–13th centuries. His books strongly influenced the medieval European alchemists ‎and justified their search for the philosopher's stone.‎ In the Middle Ages, Jabir's treatises on alchemy were translated into Latin and became standard texts for European ‎alchemists. These include the Kitab al-Kimya (titled Book of the Composition of Alchemy in Europe), translated by Robert of Chester (1144); and the Kitab al-Sab'een ‎(Book of Seventy) by Gerard of Cremona(before 1187). Marcelin Berthelot translated some of his books under the fanciful titlesBook of the Kingdom, Book of the Balances, and Book of Eastern Mercury. Several technical Arabic terms introduced by Jabir, such as alkali, have found their way into various European languages and have become part of scientific vocabulary.

Max Meyerhoff states the following on Jabir ibn Hayyan: "His influence may be traced throughout the whole historic course of European alchemy and chemistry."

The historian of chemistry Erick John Holmyard gives credit to Jabir for developing alchemy into an experimental science and he writes that Jabir's importance to the history of chemistry is equal to that of Robert Boyle and Antoine Lavoisier. The historian Paul Kraus, who had studied most of Jabir's extant works in Arabic and Latin, summarized the importance of Jabir to the history of chemistry by comparing his experimental and systematic works in chemistry with that of the allegorical and unintelligible works of the ancient Greek alchemists. ‎The word ‎gibberish is theorized to be derived from the Latinised version off Jabir's name,‎ in reference to the incomprehensible technical ‎jargon often used by alchemists, the most famous of whom was Jabir.‎ Other sources such as the Oxford English Dictionary suggest the term stems fromgibber; however, the first known recorded use of the term "gibberish" was before the first known recorded use of the word "gibber" (see Gibberish).

The Geber problem‎

The identity of the author of works attributed to Jabir has long been discussed. According to a famous controversy,‎ pseudo-Geber has been considered as the unknown author of several books in Alchemy. ‎This was first independently suggested, on textual and other grounds, by the 19th-century historians Hermann Kopp and Marcellin Berthelot.‎ Jabir, by reputation the greatest chemist of Islam, has long been familiar to western readers under the name of Geber, which is the medieval rendering of the Arabic Jabir, the Geber of the Middle Ages. ‎The works in Latin corpus were considered to be translations until the studies of Kopp, Hoefer, Berthelot, and Lippman. Although they reflect earlier Arabic alchemy they are not direct translations of "Jabir" but are the work of a 13th-century Latin alchemist.‎ Eric Holmyard says in his book Makers of Chemistry Clarendon press.(1931).‎

There are, however, certain other Latin works, entitled The Sum of Perfection, The Investigation of Perfection, The Invention of Verity, The Book of Furnaces, and The Testament, which pass under his name but of which no Arabic original is known. A problem which historians of chemistry have not yet succeeded in solving is whether these works are genuine or not.

However, by 1957 AD when he (Holmyard) wrote Alchemy. Courier Dover Publications. p. 134. ISBN 978-0-486-26298-7. Holmyard had abandoned the idea of an Arabic original. (although they are based on "Islamic" alchemical theories)

The question at once arises whether the Latin works are genuine translations from the Arabic, or written by a Latin author and, according to common practice, ascribed to Jabir in order to heighten their authority. That they are based on Muslim alchemical theory and practice is not questioned, but the same may be said of most Latin treatises on alchemy of that period; and from various turns of phrase it seems likely that their author could read Arabic. But the general style of the works is too clear and systematic to find a close parallel in any of the known writings of the Jabirian corpus, and we look in vain in them for any references to the characteristically Jabirian ideas of "balance" and the alphabetic numerology. Indeed for their age they have a remarkably matter of fact air about them, theory being stated with a minimum of prolixity and much precise practical detail being given. The general impression they convey is that they are the product of an occidental rather than an oriental mind, and a likely guess would be that they were written by a European scholar, possibly in Moorish Spain. Whatever their origin, they became the principal authorities in early Western alchemy and held that position for two or three centuries.

The question of Pseudo-Gebers identity is still in dispute (1962).‎ It is said that Geber, the Latinized form of "Jabir," was adopted presumably because of the great reputation of a supposed 8th-century alchemist by the name of Jabir ibn Hayyan.‎ About this historical figure, however, there was considerable uncertainty a century ago,‎ and the uncertainty continues today.‎ This is sometimes called the "Geber-Jābir problem".‎ It is possible that some of the facts mentioned in the Latin works, ascribed to Geber and dating from the twelfth century and later, may be placed to Jabir's credit. Full conclusions may have to wait until all the Arabic writings ascribed to Jabir have been properly edited and discussed.‎

The Pseudo-Geber corpus
The Latin corpus consists of books with an author named "Geber" for which researchers have failed to find a text in Arabic. Although these books are heavily influenced by Arabic books written by Jabir, the "real" Geber, and by Al Razi and others, they were never written in Arabic. They are in Latin only, they date from about the year 1310, and their author is called ‎Pseudo-Geber:

Summa perfectionis magisterii ("The Height of the Perfection of Mastery").‎
Liber fornacum ("Book of Furnaces"),
De investigatione perfectionis ("On the Investigation of Perfection"), and
De inventione veritatis ("On the Discovery of Truth").
Testamentum gerberi
The Liber fornacum, De investigatione perfectionis and De inventione veritatis"are merely extracts from or summaries of the Summa Perfectionis Magisterii with later additions."  which may have been compiled by later writers.‎

1 komentar: